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Lacunarity calculation in the true fractal limit 
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Abstract. We measure the lacunarity of regvlar fi-actals in the limit of an infinite fractal laltice 
using a suitable graph counting method. The calculations are performed for a recent expression 
pm$sed for lacunadry that explores the scaling properties of the mass distdbution of the fractal 
set on cells of radius r .  We present results for vatious Sierpinski camets and for Le Sieroinsld 
gasket. 

In the pioneering work of Gefen el al [l], they found that, in contrast to Euclidean lattices, 
the critical properties of physical systems on fractal lattices [2] depend not only on the 
fractal dimensionality (&) but also on other geometrical factors such as lacunarity (A). 

The possibility of characterizing the universality classes of these systems by such 
geometrical factors nattually arises, but for that it would also be necessary to introduce a 
mathematical definition of lacunarity which is intended to measure the extent of the failure 
of a fractal to be translationally invariant, or the degree of inhomogeneity of a fractal [2]. 

Since then, much effort have been made 11,341 to define lacunarity in a precise manner. 
In general, the proposals were computed for the Sierpinski carpets, a particular family of 
fractals in which, from a basic square formed by b x & subsquares, m subsquares are cut 
out recursively (see figure 1). 

Figure 1. Sierpinsld carpets at the first stage of construction (a) b = 3. m = 1; (6) and (c) 
b = 7, m = 9; (4, (e). (f) b = 9, m = 25. 

The proposals are all based on the suggestion of Gefen er al [l] to measure lacunarity: 
the fluctuation of mass around each lattice site. In short, in these studies the lacunarity 
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is calculated from a simple covering method a square cell of size s is placed at various 
positions i over the fractal and the number of sites or subsquares-the mass of the fractal- 
mi(s) inside each one is computed. All the expressions proposed to define lacunarity 
mathematically involve the fluctuation of mass 

where n(s) is the total number of different cells. 
In the first proposal [l] the cells had a fixed length scale (fixed s) and the covering was 

taken on the first stage of construction of the fractal (the generator). Later, Lin and Yang 
[3] took the results for different sizes and averaged them for the final value of lacunarity. 
Lin [4] extended the average for all sizes in the range 1 4 s 4 b - 1, while Wu and 
Hu [SI suggested that E(s) in (1) should be taken simply as the fraction of uneliminated 
area riZ(s) = s2b2 - m/b2 in the s x s covering of the generator. Taguchi [6] proposed an 
expression for lacunarity Ack)(s) where the fluctuation of mass inside cells of size s was 
computed for the fractal at the kth stage of construction and presented results for k = 2. 

Each proposal meant an improvement in relation to the previous ones conceming the 
description of the degree of homogeneity of carpets (at least for those in which the degree 
of homogeneity could be compared by visual inspection of the generators). On the other 
hand, they do not take into account the true geometric characteristics of the infinite fractal 
lattice, hut only of the lattice at the finite stages of its construction. As already noted by 
Tapchi [6],  (s) is strongly dependent on the stage k and for self-similar fractals with 
rescaling factor b it should only converge for k + 00 (in the limit of the infinite fractal 
lattice), when x 

Lee and Main [7] had also shown that A("(s) is strongly dependent on the distance scale 
s for some carpets, so that it is meaningless to speak about lacunarity without a specific 
reference to the scale s. 

Recently, AUain and Cloitre [8] suggested a new method to define lacunarity from the 
mass distribution of the &acta1 that can be applied to any self-similar fractal. In their 
proposal, lacunarity is characterized by its scaling properties, that is, by a scaling function 

s/bk << 1. 

A@)@) = f ( s / L )  for s << L (2) 

where L - b' is the characteristic size of the fractal set (taking the lattice parameter a = 1). 
In this work, we calculate explicitly A@)(s) in the limit k + 00, i.e., in the true fractal 

limit for some fractals, using the definition of Allain and Cloitre [SI. 
Consider the underlying Euclidean lattice on which the fractal is built (in the case of 

Sierpinski carpets, for instance, the underlying lattice is the square lattice) and cells of 
radius r which have centres placed on different sites of that lattice (the cell can be any 
geometrical figure which has a characteristic radius r) .  For the characteristic size L of the 
set, the total number of cells is AJ", where As is the factor form of the underlying lattice 
and E is the Euclidean dimension of the underlying lattice, for unit lattice parameter (for 
the square lattice, A, = 1 and E = 2). The distribution of mass in the collection of cells 
is given by n(M,  r ) ,  the number of cells with radius r and mass M .  The probability that a 
cell of radius r has mass M is 

It should be noticed that the true statistical behaviour can be reached only when r << L, i.e. 
when the set is large. 
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The complete characterization of the mass distribution demands the knowledge of the 
moments of the distribution, 

Z(q)(r) = M ~ P ( M ,  r )  . (4) 
M 

The lacunarity at scale r is defined as 1-31 

Note that the relative fluctuation of mass A'(r) is given by 

and that, for translationally invariant lattices, Z@)(r) = [Z(l)(r)Iz, leading to A( r )  = 1 (or 
A'(r) = 0). 

The moments (4) follow scaling relations. Consider the first moment of the mass 
distribution: 

As the centre of the cells goes through all sites of the underlying lattice, each site 
belonging to the fractal (active site) is counted V times, where V = A,rE is the volume of 
the cell, and A, is the factor form of the cell. If MO is the total mass of the fractal, we have 

Equation (Sa) can be rewritten as 

z ( ' ) ( r )  = zI(r /LlE (Sb) 

with ZI = MoAJA,. 
Now consider the second moment of the mass distribution: 

As in (S), each site contributes V times. It can be shown [9] that 

V 
z z ( r )  = M i  A,LEW) 

where C(r )  scales as f&/L)D'. Then, 
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Equation (loa) can also be rewritten as 

where the prefactor z2 N MiAe fo/A, ,  for r + ca. 
Finally, from (5). (8) and (IO) lacunarity A(r) varies according to the power law: 

The prefactor I in (1 1) characterizes the lacunarity A(r)  of the fractal set and is called 
the lacunarity parameter [ S I .  Note that A 

Our calculation of A(r) is based on a method of graph counting suitable for self-similar 
regular fractals [lo]. The method shows that the number of embeddings of a graph on any 
stage of construction of the set can be obtained from the calculation of its embeddings on 
previous stages, due to the fixed rule of construction. For Sierpinski carpets with parameters 
b and m, it was shown that the number of embeddings G(k) of a particular graph on acarpet 
at the k-stage varies as 

zz/z? N foAS/A,  for 1 << r << L. 

G(k) = A(b2 - m)k + Bb' + C . (12) 

Equation (12) also applies for other self-similar regular fractals embedded in two- 
dimensional Euclidean lattices (for instance, for the Sierpinski gasket [2] ,  with parameters 
b = 2  and m = 1). 

To find A ,  B and C, it is sufficient to calculate directly G(k) for three different stages 
of lattice construction in which the graph can be embedded. From (E), in the Iimit of the 
infinite fractal lattice (k +. m), the number of embeddings behaves as 

G(k) N A(b2 - m)' = ALD' (13) 

where Df = In(b2 - m ) / l n b  is the fractal dimension 121, and L = bk. 

with AF calculated from (13) for the number of sites (number of one-site graphs). 
As we vary the characteristic lengh L, the mass MO of the fractal scales as MO = ApLDf, 

From (8), considering the two-dimensional underlying lattice: 

(14 

In order to calculate Z@)(r) ,  we consider from (9) Z@)(r )  AsL2, the sum of the mass 
squared within each cell. As we 'glide' the cell through the underlying lattice, each one 
contains a set of active and non-active sites that forms a connected graph (see figure 2). 
Each type of graph has a number of embeddings that scales as (12). Its contribution to 
Z@(r)  A,L2 at stage k is given by G(k)Mz, where M is the number of active sites of 
the graph. Adding the contributions of all graphs, the result also scales like (12). Again 
the coefficients A ,  B and C are obtained from duect calculation of Z(2)(r) AJ2  for three 
different stages of lattice construction and vary according to the cell radius: 

r2 
Z('!(r) = AFAJA, s. 

Z@)(r) AJ2  = A(r)(bz - m)k + B(r)  bk + CO).  (15a) 
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F @ m  2 Examples of two possiDle positions of 2 x 2 cells (I = 1) at the second stage of 
carpet 1. The active sites within each cell are represented by full cirdes and non-active sites by 
crosses. 

Table 1. For carpets 1 to 6, corresponding to generators I@) to 1 0 ,  the table shows the fractal 
dimension Dr. the parameters Ap, A! and the lacunariw parametex X (see text). 

Carpet Dr AE AI A 

1 1.8928 44/35 21 .1 f0 .8  0.86*0.03 
2 1.8957 4961429 18.8fO.8 ’ 0.88f0.04 
3 1.8957 188/143 21.5 f 0.9 0.78 i 0.03 
4 1.8320 3088,2585 18.5 It 1.3 0.81 50.06 
5 1.8320 381ZJ.585 24.3 f0.2 0.70+0.01 
6 1.8320 381ZJ.585 24.5 5 0.6 0.70 * 0.02 

In the limit of an infinite fractal lattice (k + CO), analogously to (13). (15a) leads to 
Z@)(r )  A,L’ = A(r)  LD‘. (154 

But from (10) and (1%) we expect that 

A(r )  N (16) 
Using (S), (14) and (1%). 

From (ll), (16) ind (17), we obtain that in the true fractal limit ( L  -+ CO), 

Note that our method gives the exact value of A(r )  for each r ,  and that (1%) is exact 
in the limit L + CO. There are computational limitations, however, in obtaining the 
coefficients A(r ) ,  B( r )  and C ( r )  in (15a) for arbitrarily large r because this would need 
calculations on three lattice stages large enough to embed graphs of ‘size 2r’. 

By assuming that the asymptotic form (16) holds for A(r) ,  we get (18) with A1 being 
the only approximated parameter. 

In fact, the asymptotic form of ZZ(r )  A, L2-Of in (1%) for large r is obtained assuming 
that for r up to r,, there are finite-size corrections in expression (16) for A @ )  of the form 

A ( r )  N A1rD‘+’ (1 + W r ) .  (19) 
Then, from (15b), 

where the parameters A1 and B1 are determined by least-squares fit. 
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In this work we present results for lacunarity in the true fractal limit for Sierpinski carpets 
whose generators are shown in figure 1 (the carpets are labelied 1 to 6 ,  respectively). The 
prefactors AF in (14) for each lattice are shown in table 1. For them we considered square 
2r x 2r cells (A,  = 4) and the underlying square lattice (As = 1). 

We have computed explicitily Z@)(r)  Lz in the carpet limit (15b) for r < rmar For 
carpet 1, r,, = 100, for carpets 2 and 3, r,, = 90 and for carpets 4,5 and 6, r,, = 40. 
These limits are determined basically by the computing time and memory. 

F i e  3. Plot of In[Z(’)(r) Lz-Drl against Inr for carpet 1 characterized by parameters b = 3 
and m = 1 (see text). 

Figure 4. plot of Zz(r) L2-Dl/rDri1 against r for carpet 1 for 20 C r C 100. 
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In figure 3 we plot In[Z@)(r) L2-Df] (which is exact in the l i t  L -+ 00) against lnr  
for carpet 1 and in figure 4 we plot ZC2)(r). L2-Df/rD+1 against r for the same carpet. The 
linear fit (20) gives A1 = 20.60f0.02 for 20 < r 6 100 (this error bar was obtained using 
standard methods). The quality of the fit (see figure 4) indicates that finite-size corrections 
are well accounted for by equation (20). The accuracy of thii result was tested by estimating 
A1 considering various ranges of r ,  as for instance 20 Q r < 40 and 80 6 r 4 100. The 
difference between the estimates never exceeds 6%. Our final estimate of A1 has an error 
bar that includes the estimations of A, using different ranges of r for fitting (20). The same 
procedure was used for the other carpets. 

In table 1 we show the estimated value of AI for carpets 1 to 6 as well as the estimated 
values of the lacunarity parameter A (18). As lacunarity A(r) is scale-dependent, A is the 
useful parameter to order the carpets according to their degree of inhomogeneity. 

Figures 5 and 6 show the behaviour of A(r) LD'-' (obtained from (17) with the exact 
value of AF and the estimation of AI) for carpets 2 to 6. In each figure, the carpets have the 
same dimensionality 4. From (ll), A(r)  LDf" N hrDf-2. This behaviour is confirmed by 
figures 5 and 6, where a slow decay of A(r) L2-Dc with r is obtained (2 - Df = 0.104.. . 
for carpets of figure 5, and 2 - Df = 0.168.. . for carpets of figure 6). From figure 5, we 
conclude that lacunarity A(r) of carpet 2 is higher than that of carpet 3 no matter how long 
the scale distance r is. In figure 6 the plot for carpets 4-6 shows that lacunarity A(r )  of 
carpet 4 is the highest, but we can not resolve carpets 5 and 6 for any scale r. 

Figure 5. Plot of A(?) L D r 2  against r for carpet 2 (0) and carpel 3 (x) for r < 90 

Our results agree qualitatively with the previous results concerning the ordering of 
carpets according to their degree of inhomogeneity, but for the first time they are obtained 
from a calculation of mass distribution for the true fractals and not at finite stages of 
their construction. For this reason, the coincidence might be accidental. Consequentely, 
all previous analysis concerning lacunarity of carpets as a possible classifying geometrical 
parameter for universality or non-universality should be treated with care. 

To illustrate the applicability of the method to regular fractals other than carpets, 
we also calculated the lacunarity in the true fractal limit for the Sierpinski gasket with 
parameters b = 2 and m = 1 (see figure 7(a)). For this fractal we considered circular cells 
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Figure 7. The Sierpinski gasket, characterized by parameters b = 2 and m = 1, at the second 
stage of construction and e l l s  (r  = 1) at two possible positions. The active sites within each 
cell are represented by full circles. 

(A ,  = x / m )  and the underlying triangular lattice (As = 4) in (14), (IS), (18) and (20). 
Similarly, parameters A1 and B1 in (20) are determined by least-squares fit. 

Figure 8 shows the plot of 4 Z2(r)L2-Dr/rD’i1 against r and the estimated parameter 
A1 = 17.07 h0.04. Using (18) and the same procedure to obtain the final estimate for A , ,  
the lacunarity parameter is A = 0.29 h 0.01. This is the b t  estimation of lacunarity for 
the Sierpinski gasket in the literature. 

As shown in the last example, the definition of lacunarity used here 181 and our method 
of calculation [IO] may be applied to any self-similar fractal, while previous methods used 
for carpets are not applicable. Now, it is possible to conduct a fairly general analysis of the 
relevance of lacunarity for the universality classes of phase transitions on fractals. Work 
along this line is in progress. 
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Figure 8. Plot of A,Z(z)(r)L2-Dr/rDf+1 against r for the Sierpinski gasket 
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